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Abstract

The phenomena known as secondary electron emission was discovered over a
century ago. Yet, it remains very difficult to model accurately due to the limited availability
of reliableexperimental data. With the growing use of computaukatiors in hardware
development the need for accurate models has increased. This research focused on
determining what factors may lmausingmeasurement discrepancies and methods for
increasing theaccuracy ofmeasurements. It was found that several assumptions are
commonly invoked when these measurements arf®rmed that may not always be
consistent with reality. The violath of these assumptions leads to measurement bias that
is contingeh upon the apparatus artke voltages used during the measurement. This
researclshowed thasecondary electron yield measuremearts sensitig to changes in
the apparatugeometry the currentlevel, and the electmogun settings. New techniques,
hardware, and models were developed in order facilitate greater measurement repeatability

and accuracy.
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THE CHALLENGES OF LOWENERGY SECONDARY ELECTRON EMISSION

MEASUREMENT

|. Introduction

In 1902, German physicst.. Austin and H. Starke discovered the phenomenon
known assecondary electron emissio(SEE)[1]. They revealed that when a material is
bombarded with higlenergy electronghe material can become positively charged
indicating thatin addition to reflecting the higbnergy electrons, & electrons leave the
material Since this discovery, the phenomenon has proven beneficial in some cases while
a nuisance in others. From the earliest attempts to characterize SEE and even today,
measurements made of the satementperformed by differeiabs or even the same lab
displaydiscrepancies

In 2005, Lin and Jogxamined over 80 yeao$ publishedsecondary electron yield
(SEY) data from over a hundred authors and stated

AN examinatia of this data is dismuraging, because it is evident that even for
common elements (such as aluminum or gold) for which there are often a dozen or more
independent sets of data available, the level of agreement is rarely better than 25% and
often shows Hative divergences of00% or more. The result of this situation is that
anyone seeking yield data to explain an observation or to validate a model can usually find
multiplevalues spanning a large enough range to support or disprove any assgijon
SEY is the ratio of the average number of electrons leaving a mgtemamonly called
secondary electrong) the average number of electrampactingthe materia(commonly
called primary electronand is a critical paraner when characterizinthe SEE of a

material.Figurel demonstrates the large variation in SEY values for alumatahifferent

primary electrorenergiedased orthe datacompiled by Joy3].
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More recently, Sattler found that SEYeasuremesperformedon the same materiasing
two differentexperimental apparatuses shoveggnificant differences as shownhkigure
2 [4]. The discrepancies that are seen in SEE data and the scarcity of the data available

make it difficult to accurately and completely model SEE.
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Figuré2: Plot of SEY data measured by Sattler for electroplated gold using two different
apparatusegt].



1.1Research Goal

The ability to accurately model SEE is critical to the measurement of other physica
phenomenathe developmenof technology and he safe operation o$paceborneadio
frequency (RIF systemsDuring the measurement of the photoelectric effect, thermionic
emission, fieldemission, and other experimsimvolving free electrons, SEE is gent
andaffects the results of the measurement. Normally, neglecting SEE effects will bias the
measuremenflo achieve a higher degree of accuracy requires that either the effects of
SEE on the measurement are determined abtlexcted out or the experimi@l apparatus
is designed sucasto reduce the impact of SEE on the measureniém.design of these
apparatises and other technologies which rely on mitigating SEErabledoy accurate
SEE modding.

Recently,the phenoranon of SEE has experienced increased scrutinytaluts
connection with multipactoMultipactor is a cyclical process of electron muiggation
through SEE in an alternating electromagnetic field. This phenomenon takes place in a
vacuum wheg collisiors with gas moleculemreminimized.The occurrence of multipactor
within an RF system can reduce the performance of the system and cause damage. In the
space environment, damageatoRF system can render a satellite useless due to it being
unabe to transit dataresulting in a large financial loss to a space program. Furthermore,
the failure of a defense satellite reduces the capabilitpuofgovernment to provide

national security For these reasos, the Aerospace Cporation has written the



Standard/Hadbook for Multipactor Breakdown Prevention in Spacecraft Components
which povideguidancefor the test of RF componexfor use in spacfb].

This guidanceestablishes a process to verify thatRE component or system wilbt
experience multipactor breakdown when operatihg@r below maximum powdb]. In
order to ensure that breakdown will not occur, the power at which metibpoccurs is
first determined through analysis or testing, arehth safety margin is subtracted from
this power tadeterminghe maximum allowed powaevithin the component. Simulatias
considered a valid analysis method for determining the powehiah breakdown occurs
for devices with defined geometrifg. This excludes devices that vary in geometry due
to unitto-unit production variations or the incorporation of tuning elemsuntg as tuning
screws.Simulation regires that SEE is modeled, and the accurach®SEE model is
imperative in ensuring that the simulatigrelds accurate result€urrently, the guidance
indicates that a bounding/orstcaseSEY shall be used in simulaticlue to the variations
in surface conditions that can occur over the life of a component. Howknaguidance
does not provide any indications on how to model the angular and energy distribution of
the secondary electronScott Rice and John Verboncoeur have shown that multipactor is
extremdy sensitive to the energy distribution of the secondargtrelss [6]. Thus, it is
necessaryto accurately modeboth the SEY energy distributionand presumably the
angular distributionthough thesensitivity of multipactor to the angular distribution is
currently unknowhin orderto yield accurate simulation results.

In conclusion, accurate models of SEE are required for the measurement of other
physical phenomena, the development of more capeddhnology, andhe safety of

spaceborne RF systems. However, our ability to devatoprate models is hampered by
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the discrepanciesnd limited availabilityof measured SEE datéhe goal of thigesearch
is to identify the cause of the measurementréisancies angrovide guidance on methods

for improving measurement accuracy.

1.2Reseach Objectives

Since multipactor may occur when the SEY excaausy, it crucial to be able
accurately measure and model SEY at energies near and below the energhevB&ré
first exceed unity, which is known afirst crossover energMeasurements ahe SEY at
these low energies have been referred to asloevgy SEY (LESEY) measuremen{s].
These measurements come with many challenges due to factors such as the contac
potential difference (CPDbetween electrodeandthe thermal spreading of the primary
electron eneng As a result, thesmeasurements are often criticized and debatbd
research focueson LE-SEY measuremerdueto its relevance to multipactor.

In order to the achieve the goal of this researchfal@wving research objectives

were established

1) Determinefactors which may lead tmeasurement discrepancies by performing

a review of literature pertaining the measuremesiof SEE These factorsvill
exclude discrepancies due to differesin samplecomposition.

2) Develop a experimental system capable pérforming large numbers of
measurements autonomously in order ®stablish repeatability of
measuremas andacilitate testing undanumerougest conditions.

3) Develop a simulation model tfe experimental system to facilitate analysis of

experimentatest results.



4) Preform measurementt different primary currentand compare result®

determinenow changes in curremay affectSEY measurements.

5) Determine howhe spacing between the electron gun and samgyeaffectSEY

measurements

6) Detemine how the first crossovef the SEY curve is altered by changing the

potential of the electron gloptics.

7) Determine how the electron gsroptics can be adjusteith order to reduce SEY

measurement errars

8) Preform SEY measurements omagnetized sample to determine if the

magnetic type | contrast effect can be used to reduce secondary ent@sion f
the vacuum chamber wallkiring SEY measurements.

These objectives witthe exception of objectives 2 and 3 were chosen to answer
specific esearch questions which aedf-evident in the objectives and will not be restated.
The accomplishment of thesbjectives will provide insight intahe dependencef SEY
measurementsn changes in the configuration of the experimental apparatupranile

the knowledge needed to establish guidanceriproving measurement accuracy.

1.3 Chapter Outline

This dissertabn is dividedinto five chaptes. The purpose of the first chapteas
to briefly introduce SEE and multipactor and to establish the goativation, and
objectivesfor this research. The second chaptescribesSEEand multipactor in greater
detail andprovides insight into thé&ctors whichcause measurement discrepancidse

third chaptedescribes thapproach used in this research to fulfill the research objectives



and the developmenof the experimental systemnd simulation modelin the fourth
chapter, the results from simulations and experimental measurements are analyzed. The
fifth chapter provide guidance based on the conclusions draw traprevious chapters

andrecommendations for future research.

1.4Summary

This chapter introduced the taepof SEE and multipactandbriefly described the
difficulties involved in modeling SEE due tliéscrepaciesand scarcity associated with
measured SEE datdhe importance of accurate SEE modelsthie development of
technology and the safety of spacet® RFsystems was emphasized, ahd goal of
identifying the cause of the mgarement discrepancies and pravgfguidance on methods
for improving measurement accurasas establishedEight objectivesinvolving both
experimemation and simulatiowere identifiedor reaching this goalastly,anoutline of

thedissertatiorchapers was provided.



[l. Literature Review

This chapterprovides a review of literature regarding SEE and multipactor. The
first section provides a histoal overview of the important discoveries, challenges, and
inventions surrounding SEBnd multipactar The second, third, and fourth sections
describe theitferent types of SEE measurement, the apparatuses involved, and the models
usedto simulate each agct of SEE. Thdifth section describes current commercial,
multipactor software and the SEE models implemented in #aatdition themultipactor
software developed by the Air Force Office of Scientific Research (ABQ®SR the Air
Force Research Laboratory (AFRIs briefly discussedThe final section disusses the

ongoing challenges to accurate SEE measurements.

2.1 Historical Overview
The following sectinsdiscussthe important finding and activities surrounding

SEE and multipactor researfiillowed bya brief summary.

2.1.1 SEE Discovery
German physicists L. éstin and H. Starke are recognized for the discovery of the

phenomenon known as secondary electroisgion[1]. Their research begas a studypf

the relationship betweethe numberof reflectedelectronsandthepr i mary el ectr o
incidence angle. However, during the course of their research, they disc8&iatbng

with several key relationships. Firstly, they observed tmaisalated,metal reflector

became positively chargethen bombarded by higénergyelectrons This indicated to

them that in addition to the usual electron reflection other negatikiahged parties were

rel eased. Secondl vy, they believed that the
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negative electricity) was a result thfe emission of negatively charged particles whose
velocities were of the same order of magnitudsthe incidentelectrons However, he
scientific community now knows that these charged particles can have velocities
distributed acrosseveral orders of magaode depenidg on the incident velocity of the
primary electron.Thirdly, they found that the emission decreassdthe speed of the
incidentelectronincreasedBased on data obtained following their discovery, this is not
completely true: themission fist increases as the speed ofgihenaryelectron increases
before decreasingrourthly, they found that emissioncreases when the target surface is
polished which is consistent with data collected since their discoverhly, they
concludedhat emssion increases as the density of the reflector increBsissconclusion
however does not agree widlata colected since their discovergnd t wasdetermined
thata correlation between emission and work function could just as easily be obrved
Efforts to correlate emission to other physical characteristics of materials haireied,

but the results thus far have been inconclu$le Lastly, they discovered that the
emission increasedith inciderceangle which is consistent with data collected since their
discovery.They published these findinin 1902 and many of these findingsemain
relevant to his day. Throughout history, this phenomenon has also been called secondary

emission and secondary electron radiation.

2.1.2 Classification of Secondaries

Shortly after the discovery of secondary electemmission, German physicist P.

Lenard made the distinctidmetweenwhat he calledis econdary el ectron

r

a
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el ect r on rerthe elacteonsiexcitedby the primary electrong éPHE ejected from

the material. They are now commonly called true secondary electrony (TSELenar d 6 s
i Ruc k di drdthe primannedctronswhich arebackscattered from threaterial. Tls

group is further divided intdnelastically backscatter primar(IBP) and elastically

backscatter primgr(EBP). Figure3 identifies the types of electrons involved in secondary

el ectron emission. For clarity, the term As:
types of secondary electrons ejected framtarget material. Thughout history, this term

has been used inconsistently: sometimes referring true secondary electrons and other times
referring to all emitted electronsenard made this distinction because he found that there

i s a 0s| owecondagies dhathave aéppraximately constant energy (~10 eV)
regardless of the primary electronenef@gly T hi s A s | i®scwromogly assogmted

with TSE.Figure4 shows a typical energy distribution for secondariesidantifies the

relative position of each secondary electron tyfgger electrons will be discussed in a

later section.

PE

IBP IBP

EBP

TSE
TSE Auger

TSE

Figure3: Diagram identifying types of secondaries generated during SEE.
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Figure4: Secondary electromergy distribution with secondary electron types identified.
N(E) is the distribution of secondary electronswispect to energy and is normally
shown in ambiguous units.

2.1.3 First Device to Harness SEE
In August of 1915, Albert WHull patented the dynatron while working ftire
General Electric Research Laborat@Fygure5) [10]. This was the first device to make
use of SEE The dynatron is a vacuum tube device that functasna negative resistance
when appropriately biasdi1]. It can be used in amplifier and oscillator circyit$, 12].
In 1922,Hull referred to the electrode that emitted secondaridseadyinode. This term is
still used today to describelectrodes that perform electron multiplication through

secondary electron emission.

11



FigureS:HThe d/natron[11].
2.1.4 Auger Electrons
In 1923, Austriamphysicist Lise Meitner discovered Auger electrdraigh French
physicist Pierré/ictor Auger is credited with the discove[$3]. When an inner shell
electron of an atom is removed by a primary electron or photon, an oateelglatron
emits energy and falls to fill the vaway in the inner shelFigure6). The emitted energy
can either escape the atom as a photon or be transferred to another electrontivich is

ejected from the atom. The ejetttelectron is known as an Auger electron.

Electron collision Auger electron emission

Figure6: Schematic of Auger electron emission progéds.
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Auger electror are emitted with specific eneeg thatareassociated with the quantized
enery levels of the atom and normally appear atightly higher energyhanthe TSEIn

the energy distributiorfFigure 4). They constitute an extremely small portion of the
secondary electron population (less thiarin 1¢") [15]. Consequently, they are not
considered inthe simulation of multipactprvacuum tube devices, and many other

simulations involving secondary electrons.

2.15 Electron Diffraction

In 1924, Louis de Broglie, based ¢me findings of Plaric Einstein, and Bohr,
suggested that particles could act as waves having a wavelength associated with their
momentum[16]. This relationship predicted that crystaleen bombarded by electrons
would exhibt diffraction following the Bragg diffraction condition, which had previously
been applied tX-ray diffraction. In 1927, DavissomandGermerin the USand Thomson
in Britainindependentlpbserved the electron diffraction pattern experimenfay. The
diffraction patterrappearsn the angular distribution associated with the EBgse way
to observe the diffraction pattern is to use glectrically biasedyrids to filter out slower
secondary electrongsing a retarding pagntial (Figure 7). The remaining electrons are
accelerated into a ubrescent screen for visual observati@ince a majority of the
materials used ithe constructionof RF and vacuum tube devices are not crystalline and
EBPs constitute a small perntage of the secondarjetectron diffraction icommonly

ignored in the simulation of these devices.

13
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Figure7: Diagram of lowenergy electron diffraction (LEBCapparatus.

2.1.6 Vacuum Tube Distortion
Il n the |l ate 192006s as vacuum tulSEE el ectr c

produced undesirable behavior in the tetr§tdd. During this time, Bernard Tellegen

began researching ways to red&teE from the anode of theetrode[17]. Methods such

as coating the anode with carbon and cutting ridges into the anode reduced the emission

but did not completely suppress irregularities in the teeblehaviof18]. By December

of 1926, Tellegen solved the problem by placing an additgnd between the anode and

the screen gridFigure 8) [19]. The additional grid is called the suppressor grids|lt i

negatively biasd with respect to the anode in orderforce theslow-moving secondary

electronshack intotheanode. Since a large portion of secondaairesmoving bwly, the

14



suppressor gritargelyeliminated the undesirable behavior in the tetrddhe. tetrode with

the suppressor grid became known as the pentode.

Z
4
3

2

6

Figure8: Diagram of Pentodf9]. 20 control gid; 30 screen grid;  suppressor grid;
538 anode; 6 cathode

2.1.7 Multipactor Discovery

In 1924, French physicist Camille Gutton is believed to be the first person that
experienced the multipactor phenomenon during his research of low pressure glow
discharge at high frequency; however, Gutton attributed the phenomenon to ions and failed
to identify electrons and secondary electron emissiahesinderlying caugeo, 21, 22].

He along with his son, Henri Gutton, continued to study the glow discharge phenomena at
high frequency but failed to malecanection between secondary electron emission and
theobserved phenomeiia2, 23, 24].

The discovery of multipactor was not accidental: it was predicted, and a device was
designed to make use of the pheron I n the early 193Qas, Phil
device to amplify weak electrical signals through the multiplication of electrons via SEE
in an alternating electric fiel@5]. He referred to the device as a multipattdye (Figure
9)[26,27,28 These tubes did not find any | asting

name was transfieed from the tubes to the phenomenon on which they are [28ed
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MULTIPACTOR OSCILLATOR AND AMPLIFIER

Filed Feb. 24, 1936 2 Sheets-Sheet 1
= i
- -_--/ 4
ITig 1. 79
# 7 6 /hr0 9
= : 1y

"?__L,
%&
)
FigureQ:Far nswort hdéds Multipactor Tube |
Multipactor is a process of electron multipaction in an alternating electromagnetic field

due to SEE. The multipactor phenomenon takes place withicuurawhere collisions

with gas moleculesre minimized. Common examples of multipactor include single

suface and twesurface multipactor. Singleurface multipactor commonly takes place at

waveguide pressure windows. A free electron can appear neaelbetritt window due

to numerous emission processes (e.g. high energy space particles, photoelasttriekffe

emission, etc.)Rigure10a). The electromagnetic field, propagating towards the right in

Figure 10, forces the electron into the dielectric. If the energy ofrtigactingelectron is

sufficient to generate more than one secondbagtron multiple electrons will be emitted

from the dielectric surface leaving behind itigse charge Figure 10b). The emitted

electrons are accelerated by the electromagnetic field and collide again with the dielectric

window generating additia@h free dectrons Figure 10c). This process continues with
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additioral free electrom being generated during each impact. The dielectric window is
heated during this process amdyexperience a catastrophic failure.

® electron mmmm positive charge dielectric

_q - B _q B ﬂ - B

1 A .
\ I ‘\.;ﬁk
s E 1]

(a) (b) (c
Two-surface multipactor is phenomenon kxied by Farnsw r t hds mul ti pac

tml

Figurel0: Singlesurface Multipactor.

tubes. An alternating electric field between two parallel plates causes a free electron to be
accelerated into one of the plat€sgglrella). If the energy of the electronssfficient to
geneate more than one secondary electronltiple electrons will be emitted from the

plate. The emitted electrons are then accelerated by the electric field and collide with the
opposite plateKigure11b). This second collision muytlies the number of free electr®n
(Figurellc). Theelectron multiplication process happens synchroyongh the electric

field leading toa buildup of electrons between the two places. The repeated impact of
electrons with th plates heats the surface of the plates prodwengral possibleffects:

surface conditioningemission of xray photonsdamage to the plateandoutgassing of
trapped gases. The outgassing of trapped gases is especially detrimental. The collision of

electrons with gas molecules ionizes the gasdeculescreating plama The plasma
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absorbs much of the RF energy leadiiog further heating and energy loss. If left
unattended, the component may experience a catastrophic fauuteermore, harmful-x
ray radiation may be emitted during multipactor causing damage twuswling electronics
and living organism§g28].

@® clectron

|
|

(a) (b) (©
Figure1ll: Two-surface Multipactor.

)
e
P
1l
—_—
tril

2.1.8 Multipactor Semiempirical Modeling
Duringthe ® 3 0 6 s, rsbegae ta prapbse theories for multipa¢gy. In
order to make analytic solutions tractable, reseasciiade assumptions without having
any physical basis and focused on simple geometries, such as paaadisbnd singé
dielectric surfaceR20]. Some of these assumptions were
1) the secondary electrons are emitted at a velocity of zero, a velocity that is
proportion to a constark times the primary electron velocitghé constarik
theory), or a velocityv, that is constant (monoenergetic) regardless of the primary
electron elocity (the constanv theory)[20, 29]

2) the emitted velocity of the secondary electrons is normal to tfeecs[80]
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3) electric field between the plates is unifdi30]
4) space charge effects are negligiiBie]
5) magnetic field effects are negligif&0]

Based on the physics of SEE, the first two assumptiona@eect Nevertheless, by
making these assumptions researchers were able to develogersgrmical equations
which they could fit to experimental data. These models were usefabftructing
multipactor susceptibility curves for use by engineers but did not aid in understanding the
underlying processes involvea multipactor[20].

Figure 12 shows the baseline multipactor ekhold curve found in the
Standard/Handbook for Multipactor Breakdown Prevention in Spacecraft Components
This curve was produced using Hatch and Williams susceptibility curves which are based
on a parallel plate geomgtrThe peak RF voltage the voltage at which multipactor
breakdownoccurs The gap ighedistance between the parallel plates, and the frequency
is the frequency associated with the electromagnetic fieldrdar to avoid multipactor
breakdown, a compent should be operated in the mybelow the bold, black curve.
Though these curvesre based on parallel plate geometry, they are routinely used to
determine the multipactor breakdown threshold of-parallel plate geometries.

When applied to noeparallel plate geometries, ovepnsevatism may exisfb].
This is due to the fact that the parallel plate assumption does not include electron loss
mechanisms. When analysis is performed on realistic RF components, the opposing
walls are considered to hefinite parallel platesKigure 13a). Since the features on the
walls are not infinitely wide, electrons can escape from the sildee featuresKigure

13b-c). Due to this loss mechanism, the actualtipactor breakdown threshold may be
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much higher than that predicted using susceptibilitwesif5]. The accuracy of these
models decreases when the opposing walls are not parallel and when the gap is large
compared to the &ure sizg5]. Due to the limited applicability of the semmprical

models, much of the design for multipactore systems was done through trial and error
[31]. It would not be until the devgbment of multipactor computer simulations that the

breakdown thresholds of complex geometdesld be more accurately predicted.
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Figurel2: Baseline multipactor breakdown threshfil
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parallel plates in the analysis using susceptibility curves.
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2.1.9 Multipactor Simulation

To the authordés knowl edge, t himulagoar | i e st

was developed by Stanford University in 1928, 32, 33]. Using the simulation, the
researchers were able to track numerous initial electrons and multiple generations of
secondary electrons in twangensions Figure 14). From the simulation, the researchers
discovered a nenesonant multipactor process as opposed to the thekmadin resonant
multipactor procesg32]. In this simulation, the élds within the cavitywere first
calculated, and then initial electrons were introduced into the cavity. The simulation
calculated the trajectories of individual electraheughnumericalintegration until the
electrons impacted the walls. A Monte Caalgorithmbased on exgrimentalSEE data

was then performed to determine the number of secondaries and their associated energies
[32].

This simulation was a significant step forward in multipactor research. SEE data
was finallyintegrated into mulpactor analysis, and more complex geometries could now
be analyzed. The unfortunate disadvantage associated with this type of simulation is that
each electron must be tracked. During multipactor, the number of free electrons can grow
to more than a trillio within 50 to 300 RF cycles requiring excessive computer resources
for tracking all the electrori84, 35]. The need to simulate large numbers of particles was
addressed by particia-cell simuhbtions.

According to Kishelet al, particlein-cell (PIC) simulations began to be applied
to multipactor inthe 19 0 {8]. Prior to being applied to multipactor, PIC simulations
had been applietb plasna researcl36]. PIC simulations are applied to the plasma and

multipactor phenomendue to the excessive computational requirement associated with
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tracking individual particles. In order to reduce the number of pestieing tracked,
individual particles ar e (psoccalpdendcropastiglast h e r
which are then trackd@6].
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Figure 14: Typical computer plot of electron trajectoriesogucedby the multipactor
simulation program developed at Stanford Univeridg].

There are numerous PIC algorithms currently avaijaitempting to discuss each in
detail would be futile. Generally, the algorithms fallthe cycle of arithmetic operations
shown inFigurel5 [36, 37, 38]. In Figure 15, the index references quantities associated
with a superpatrticle, and tidicesj, k, andl reference the nodes af3-D spatial grid. For
each t i tntee algarithm perfogms four operations. First, based on the location of
the superparticle in the usdefined spatial grid, the associated charge distribution of the

superparticle, and the velocity distributiohtbe superparticle, a current and charge density
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is assigned to either the nearest grid point or eight grid points surrounding the superpatrticle

[36, 37].
Weight superparticle current
and charge density to spatial
grid
XirPir Vi = Pk ) jk
Integrate equations of Solve EM equations on the
motion and update erid
superparticle locations At
JFi->vi > [v;-x Piki ikt = Ejxp Bkt

'y

Weight EM force to
superparticle locations

Ejx1,Bjxi — Fi

Figurel5: General flow of operations PIC algorithms.

Due to the periodicity of the spatial gr
using a Fast Fourier Transform (FFWhich yields the electric and magiefield
componerg at each spatial nofié6]. Since the superparticles are not located at the nodes,
a weighting schemis usedto determine the electric and magnetic field at the location of
the superparticle and the resultdorenz force oithe superparticlg87]. The new position
and velocity of each of the superparticles
second law of motion or the relativistic equations of mdis&j). Additional operationsire

required to simulate SEE atitk ionization events which occur in plasma

2.1.10 SEE Measurement Difficulties
Despite thesuccess seen in the developmenvaduum tube devicescientiss

struggled to make accurate me@snens of SEEthatwere consistent across thaentific
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community. The methods and equipment used in the measurement of SEGoha
through several important changes since the discovery of SEE. In 1938, Warnecke pointed
out the variabilityof SEY causedby varying the duration and temperature of heat
treaments[39]. Figure 16 demonstrates the sensitivity of the SEY of aluminum to heat
treatments. A decade later, McKay indicated that probably theimpsrtant development
since the discovery of secondary emissma s t he creation of néext
treat ment and car ef (8] ArdunddIv8thealecttongunlte@mmen ni qu e s
the predominated device for ma§g SEY measuremeni8]. Previously,the triode was
also used in SEY measurements. According to McKay, the results obtained using an
electron gun were more easily interpreted than the triode mghoahd Bruining wrote
that the triode method was less accuféfg. Despite the improvemesthat were made in
the measurement of SEE, in 198amerantz and Marshall ate,

AThe disagreement among the results of diffezgperiments is such as to preclude
many crucialcomparisons which could cast light upon the nature of the mechanisms
involved in the process of secondary emissjda].

Si nce t kaeuun @dhribldgy has continued tgiove, and two additional
technologies were delaped that have allowed scientists to make improved measurements.
The first technol ogy was modern surface ans:
instruments became widely available and allowed scisrttistharacterize the chemical
composition of tkir sampleg42]. This knowledge gave scientists a better understanding
of the factors that were affecting SEE and the ability to identify when contaminants had
formed on their saples. The second technology was theanroom. In 1962, Willis

Whitfield invented the cleanroom which allowed scientists to prepare samples with fewer
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contaminantd43]. Together, these technologies have helped scientisteereshmple

contamination and identifythen sample contamination has occurred.

Figure16: Secondary electron yield for aluminum following heat treatmgg@&k Curve
10 24 hours after end of pumping. @erl2® after 1.5 h of 440° C heatirend 240 h
after curve 1. Curve 128after 1 h of 400° C heating following curve 125. Curved30
after 2.5 h of 470° C heating following curve 128. Curvedld@er 1.5 h of 570° C
following curve 130. Curve & data from Fawsworth. Curve @ data from Copeland.
Neverthelessniconsistenciesn SEE measurements contite occur.ln 1981, a
group of researchers performédiger electron spectroscopy (AE&easurements on
copper and goldising 28 different instrumentgl4]. These measuremenge of the
secondary electron energy distributiofhis distribution contains peaks which are
associated with Auger electrons and can be used to identify the elemerpalkdtan of
a surface. Their results showed significant inconsistencies in both Auger electron energies

and intensities. They concludétat a measurement standard was necessary to eliminate

the inconsistencies. In 1991, the International Organizatiorst@andardization formed
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